circosThe research focus of the Simonyan Laboratory is two-fold: identification of the central mechanisms responsible for speech production and elucidation of the pathophysiology of neurological voice and speech disorders. 
 
Our earlier contributions involved identification of the extensive projection system of the laryngeal motor cortex in the rhesus monkey using neuroanatomical tract tracing. Using multimodal neuroimaging, our laboratory later played a central role in i) identification of the laryngeal motocortical representation in humans; ii) defining the functional connectome of speech production, and iii) elucidation of the mechanisms of dopaminergic neurotransmission during speaking, as well as those underlying left-hemispheric lateralization of speech networks. We are currently focused on examining temporal characteristics of laryngeal motocortical activity and the modulatory role of different neurotransmitters on neural networks controlling speech production. To this end, we are developing multi-compartmental neural population models to test specific hypotheses about speech motor control, which have remained extremely challenging to address due to either invasiveness of the applied methods or technical limitations.
 
Our contributions to the understanding of the pathophysiology of neurological speech disorders include a comprehensive mapping of brain functional, structural and dopaminergic alterations as well as identification of neuropathological changes in spasmodic dysphonia (laryngeal dystonia) and voice tremor. We demonstrated that focal dystonia is a disorder of large-scale functional neural networks, where abnormal regional interactions may contribute to network-wide alterations. We also established that abnormal sensory discrimination thresholds in patients with focal dystonias represent a common endophenotypic trait of this disorder. We further showed that clinically and genetically distinct forms of spasmodic dysphonia can be accurately classified based on cortical sensorimotor abnormalities, the latter serving as potential objective diagnostic markers for this disorder. Our laboratory described the first spasmodic dysphonia patient with a causative DYT25 (GNAL) mutation and determined the polygenic risk of focal dystonia. Most recently, we delineated the first effective use of a novel oral medication, sodium oxybate (Xyrem®), in patients with spasmodic dysphonia and voice tremor.
 
The Simonyan laboratory currently uses multi-modal neuroimaging, machine learning, and neural population modeling to determine and validate phenotype- and genotype-specific neural markers of dystonia as well as the endophenotypic markers of its development. We are also working on the identification of the primary neural determinants of clinical response to sodium oxybate in patients with dystonia and tremor as a potential new therapeutic option. Another goal is to delineate abnormal neurotransmission in dystonia, which would ultimately help identify other novel pharmacological targets. We are applying several genetic strategies, including next-generation sequencing in dystonia families and singleton cases as well as genome-wide association studies in isolated populations, in order to identify new genes and risk factors of spasmodic dysphonia.
 

We have new studies, and we are recruiting particpants! Join us to move the research forward! More info here

 

Join our Team - Open Positions! More info here

Recent Publications

A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity
Kristina Simonyan, Steven J Frucht, Andrew Blitzer, Azadeh Hamzehei Sichani, and Anna F Rumbach. 2018. “A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity.” Sci Rep, 8, 1, Pp. 16111.Abstract
Oral medications for the treatment of dystonia are not established. Currently, symptoms of focal dystonia are managed with botulinum toxin injections into the affected muscles. However, the injection effects are short-lived and not beneficial for all patients. We recently reported significant clinical improvement of symptoms with novel investigational oral drug, sodium oxybate, in patients with the alcohol-responsive form of laryngeal focal dystonia. Understanding the mechanism of action of this promising oral agent holds a strong potential for the development of a scientific rationale for its use in dystonia. Therefore, to determine the neural markers of sodium oxybate effects, which may underlie dystonic symptom improvement, we examined brain activity during symptomatic speech production before and after drug intake in patients with laryngeal dystonia and compared to healthy subjects. We found that sodium oxybate significantly attenuated hyperfunctional activity of cerebellar, thalamic and primary/secondary sensorimotor cortical regions. Drug-induced symptom improvement was correlated with decreased-to-normal levels of activity in the right cerebellum. These findings suggest that sodium oxybate shows direct modulatory effects on disorder pathophysiology by acting upon abnormal neural activity within the dystonic network.
Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel
Stefan Fuertinger and Kristina Simonyan. 2018. “Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel.” Mov Disord.Abstract
OBJECTIVES: Task-specific focal dystonia selectively affects the motor control during skilled and highly learned behaviors. Recent data suggest the role of neural network abnormalities in the development of the pathophysiological dystonic cascade. METHODS: We used resting-state functional MRI and analytic techniques rooted in network science and graph theory to examine the formation of abnormal subnetwork of highly influential brain regions, the functional network kernel, and its influence on aberrant dystonic connectivity specific to affected body region and skilled motor behavior. RESULTS: We found abnormal embedding of sensorimotor cortex and prefrontal thalamus in dystonic network kernel as a hallmark of task-specific focal dystonia. Dependent on the affected body region, aberrant functional specialization of the network kernel included regions of motor control management in focal hand dystonia (writer's cramp, musician's focal hand dystonia) and sensorimotor processing in laryngeal dystonia (spasmodic dysphonia, singer's laryngeal dystonia). Dependent on skilled motor behavior, the network kernel featured altered connectivity between sensory and motor execution circuits in musician's dystonia (musician's focal hand dystonia, singer's laryngeal dystonia) and abnormal integration of sensory feedback into motor planning and executive circuits in non-musician's dystonia (writer's cramp, spasmodic dysphonia). CONCLUSIONS: Our study identified specific traits in disorganization of large-scale neural connectivity that underlie the common pathophysiology of task-specific focal dystonia while reflecting distinct symptomatology of its different forms. Identification of specialized regions of information transfer that influence dystonic network activity is an important step for future delineation of targets for neuromodulation as a potential therapeutic option of task-specific focal dystonia. © 2018 International Parkinson and Movement Disorder Society.
Codrin Lungu, Laurie Ozelius, David Standaert, Mark Hallett, Beth-Anne Sieber, Christine Swanson-Fisher, Brian D Berman, Nicole Calakos, Jennifer C Moore, Joel S Perlmutter, Sarah E Pirio Richardson, Rachel Saunders-Pullman, Laura Scheinfeldt, Nutan Sharma, Roy Sillitoe, Kristina Simonyan, Philip A Starr, Anna Taylor, Jerrold Vitek, and NINDS Workshop Research Priorities participants and organizers of the on in Dystonia. 2020. “Defining research priorities in dystonia.” Neurology.Abstract
OBJECTIVE: Dystonia is a complex movement disorder. Research progress has been difficult, particularly in developing widely effective therapies. This is a review of the current state of knowledge, research gaps, and proposed research priorities. METHODS: The NIH convened leaders in the field for a 2-day workshop. The participants addressed the natural history of the disease, the underlying etiology, the pathophysiology, relevant research technologies, research resources, and therapeutic approaches and attempted to prioritize dystonia research recommendations. RESULTS: The heterogeneity of dystonia poses challenges to research and therapy development. Much can be learned from specific genetic subtypes, and the disorder can be conceptualized along clinical, etiology, and pathophysiology axes. Advances in research technology and pooled resources can accelerate progress. Although etiologically based therapies would be optimal, a focus on circuit abnormalities can provide a convergent common target for symptomatic therapies across dystonia subtypes. The discussions have been integrated into a comprehensive review of all aspects of dystonia. CONCLUSION: Overall research priorities include the generation and integration of high-quality phenotypic and genotypic data, reproducing key features in cellular and animal models, both of basic cellular mechanisms and phenotypes, leveraging new research technologies, and targeting circuit-level dysfunction with therapeutic interventions. Collaboration is necessary both for collection of large data sets and integration of different research methods.
Normal temporal discrimination in musician's dystonia is linked to aberrant sensorimotor processing
Fiachra Maguire, Richard B Reilly, and Kristina Simonyan. 2020. “Normal temporal discrimination in musician's dystonia is linked to aberrant sensorimotor processing.” Mov Disord.Abstract
OBJECTIVES: Alterations in sensory discrimination are a prominent nonmotor feature of dystonia. Abnormal temporal discrimination in focal dystonia is considered to represent its mediational endophenotype, albeit unclear pathophysiological correlates. We examined the associations between the visual temporal discrimination threshold (TDT) and brain activity in patients with musician's dystonia, nonmusician's dystonia, and healthy controls. METHODS: A total of 42 patients and 41 healthy controls participated in the study. Between-group differences in TDT z scores were computed using inferential statistics. Statistical associations of TDT z scores with clinical characteristics of dystonia and resting-state functional brain activity were examined using nonparametric rank correlations. RESULTS: The TDT z scores of healthy controls were significantly different from those of patients with nonmusician's dystonia, but not of patients with musician's dystonia. Healthy controls showed a significant relationship between normal TDT levels and activity in the inferior parietal cortex. This relationship was lost in all patients. Instead, TDT z scores in musician's dystonia established additional correlations with activity in premotor, primary somatosensory, ventral extrastriate cortices, inferior occipital gyrus, precuneus, and cerebellum, whereas nonmusician's dystonia showed a trending correlation in the lingual gyrus extending to the cerebellar vermis. There were no significant relationships between TDT z scores and dystonia onset, duration, or severity. CONCLUSIONS: TDT assessment as an endophenotypic marker may only be relevant to nonmusician forms of dystonia because of the lack of apparent alterations in musician's dystonia. Compensatory adaptation of neural circuitry responsible for TDT processing likely adjusted the TDT performance to the behaviorally normal levels in patients with musician's dystonia, but not nonmusician's dystonia. © 2020 International Parkinson and Movement Disorder Society.

Latest News

Organization for Human Brain Mapping Award

June 13, 2019
dv
Davide Valeriani, PhD, won the People’s Choice Abstract Award for the poster: “Automatic Diagnosis of Spasmodic Dysphonia with Structural MRI and Machine Learning” presented at the annual meeting of the Organization for Human Brain Mapping (OHBM) on June 9-13, 2019, in Rome, Italy. 
OHBM Poster.pdf5.33 MB

Children's Choice Poster Award

June 12, 2019
Sandra
Sandra Hanekamp won the (PI's) Children's Choice Poster Award for her poster: "The structural connectome of isolated task-specific focal dystonia", which she presented at the annual meeting of the Ogranization for Human Brain Mapping, June 9-13, 2019 in Rome, Italy. 
Children's Poster Choice Award.pdf48.08 MB

Tweets by @SimonyanLab