circosThe research focus of the Simonyan Laboratory is two-fold: identification of the central mechanisms responsible for speech production and elucidation of the pathophysiology of neurological voice and speech disorders. 
 
Our earlier contributions involved identification of the extensive projection system of the laryngeal motor cortex in the rhesus monkey using neuroanatomical tract tracing. Using multimodal neuroimaging, our laboratory later played a central role in i) identification of the laryngeal motocortical representation in humans; ii) defining the functional connectome of speech production, and iii) elucidation of the mechanisms of dopaminergic neurotransmission during speaking, as well as those underlying left-hemispheric lateralization of speech networks. We are currently focused on examining temporal characteristics of laryngeal motocortical activity and the modulatory role of different neurotransmitters on neural networks controlling speech production. To this end, we are developing multi-compartmental neural population models to test specific hypotheses about speech motor control, which have remained extremely challenging to address due to either invasiveness of the applied methods or technical limitations.
 
Our contributions to the understanding of the pathophysiology of neurological speech disorders include a comprehensive mapping of brain functional, structural and dopaminergic alterations as well as identification of neuropathological changes in spasmodic dysphonia (laryngeal dystonia) and voice tremor. We demonstrated that focal dystonia is a disorder of large-scale functional neural networks, where abnormal regional interactions may contribute to network-wide alterations. We also established that abnormal sensory discrimination thresholds in patients with focal dystonias represent a common endophenotypic trait of this disorder. We further showed that clinically and genetically distinct forms of spasmodic dysphonia can be accurately classified based on cortical sensorimotor abnormalities, the latter serving as potential objective diagnostic markers for this disorder. Our laboratory described the first spasmodic dysphonia patient with a causative DYT25 (GNAL) mutation and determined the polygenic risk of focal dystonia. Most recently, we delineated the first effective use of a novel oral medication, sodium oxybate (Xyrem®), in patients with spasmodic dysphonia and voice tremor.
 
The Simonyan laboratory currently uses multi-modal neuroimaging, machine learning, and neural population modeling to determine and validate phenotype- and genotype-specific neural markers of dystonia as well as the endophenotypic markers of its development. We are also working on the identification of the primary neural determinants of clinical response to sodium oxybate in patients with dystonia and tremor as a potential new therapeutic option. Another goal is to delineate abnormal neurotransmission in dystonia, which would ultimately help identify other novel pharmacological targets. We are applying several genetic strategies, including next-generation sequencing in dystonia families and singleton cases as well as genome-wide association studies in isolated populations, in order to identify new genes and risk factors of spasmodic dysphonia.
 

We have new studies, and we are recruiting particpants! Join us to move the research forward! More info here

 

Join our Team - Open Positions! More info here

Recent Publications

A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity
Kristina Simonyan, Steven J Frucht, Andrew Blitzer, Azadeh Hamzehei Sichani, and Anna F Rumbach. 2018. “A novel therapeutic agent, sodium oxybate, improves dystonic symptoms via reduced network-wide activity.” Sci Rep, 8, 1, Pp. 16111.Abstract
Oral medications for the treatment of dystonia are not established. Currently, symptoms of focal dystonia are managed with botulinum toxin injections into the affected muscles. However, the injection effects are short-lived and not beneficial for all patients. We recently reported significant clinical improvement of symptoms with novel investigational oral drug, sodium oxybate, in patients with the alcohol-responsive form of laryngeal focal dystonia. Understanding the mechanism of action of this promising oral agent holds a strong potential for the development of a scientific rationale for its use in dystonia. Therefore, to determine the neural markers of sodium oxybate effects, which may underlie dystonic symptom improvement, we examined brain activity during symptomatic speech production before and after drug intake in patients with laryngeal dystonia and compared to healthy subjects. We found that sodium oxybate significantly attenuated hyperfunctional activity of cerebellar, thalamic and primary/secondary sensorimotor cortical regions. Drug-induced symptom improvement was correlated with decreased-to-normal levels of activity in the right cerebellum. These findings suggest that sodium oxybate shows direct modulatory effects on disorder pathophysiology by acting upon abnormal neural activity within the dystonic network.
Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel
Stefan Fuertinger and Kristina Simonyan. 2018. “Task-specificity in focal dystonia is shaped by aberrant diversity of a functional network kernel.” Mov Disord.Abstract
OBJECTIVES: Task-specific focal dystonia selectively affects the motor control during skilled and highly learned behaviors. Recent data suggest the role of neural network abnormalities in the development of the pathophysiological dystonic cascade. METHODS: We used resting-state functional MRI and analytic techniques rooted in network science and graph theory to examine the formation of abnormal subnetwork of highly influential brain regions, the functional network kernel, and its influence on aberrant dystonic connectivity specific to affected body region and skilled motor behavior. RESULTS: We found abnormal embedding of sensorimotor cortex and prefrontal thalamus in dystonic network kernel as a hallmark of task-specific focal dystonia. Dependent on the affected body region, aberrant functional specialization of the network kernel included regions of motor control management in focal hand dystonia (writer's cramp, musician's focal hand dystonia) and sensorimotor processing in laryngeal dystonia (spasmodic dysphonia, singer's laryngeal dystonia). Dependent on skilled motor behavior, the network kernel featured altered connectivity between sensory and motor execution circuits in musician's dystonia (musician's focal hand dystonia, singer's laryngeal dystonia) and abnormal integration of sensory feedback into motor planning and executive circuits in non-musician's dystonia (writer's cramp, spasmodic dysphonia). CONCLUSIONS: Our study identified specific traits in disorganization of large-scale neural connectivity that underlie the common pathophysiology of task-specific focal dystonia while reflecting distinct symptomatology of its different forms. Identification of specialized regions of information transfer that influence dystonic network activity is an important step for future delineation of targets for neuromodulation as a potential therapeutic option of task-specific focal dystonia. © 2018 International Parkinson and Movement Disorder Society.
The extrinsic risk and its association with neural alterations in spasmodic dysphonia
Laura de Lima Xavier and Kristina Simonyan. 2019. “The extrinsic risk and its association with neural alterations in spasmodic dysphonia.” Parkinsonism Relat Disord.Abstract
INTRODUCTION: Spasmodic dysphonia (SD) is an isolated focal dystonia characterized by laryngeal spasms during voluntary voice production. Environmental factors have been assumed to play a role in SD pathophysiology; however, the exact extrinsic risk factors and their association with neural alterations remain unknown. METHODS: A total of 186 SD patients and 85 healthy controls completed a structured 177-question survey, consisting of questions on general biographical information, medical history, symptomatology of dystonia. Data were imputed in a stepwise regression model to identify extrinsic risk factors for SD. In addition, functional MRI data from a subset of this cohort were analyzed to determine brain activation abnormalities associated with the SD extrinsic risk. RESULTS: We found that (1) recurrent upper respiratory infections, gastroesophageal reflux, and neck trauma, all of which influence sensory feedback from the larynx, represent extrinsic risk factors, likely triggering the manifestation of SD symptoms, and (2) neural alterations in the regions necessary for sensorimotor preparation and integration are influenced by an extrinsic risk in susceptible individuals. CONCLUSIONS: These findings provide evidence for the extrinsic risk in SD development and demonstrate the link with alterations in the sensorimotor preparatory network that collectively contribute to the multifactorial pathophysiology of SD.
Functional and structural neural bases of task specificity in isolated focal dystonia
Serena Bianchi, Stefan Fuertinger, Hailey Huddleston, Steven J Frucht, and Kristina Simonyan. 2019. “Functional and structural neural bases of task specificity in isolated focal dystonia.” Mov Disord.Abstract
BACKGROUND: Task-specific focal dystonias selectively affect movements during the production of highly learned and complex motor behaviors. Manifestation of some task-specific focal dystonias, such as musician's dystonia, has been associated with excessive practice and overuse, whereas the etiology of others remains largely unknown. OBJECTIVES: In this study, we aimed to examine the neural correlates of task-specific dystonias in order to determine their disorder-specific pathophysiological traits. METHODS: Using multimodal neuroimaging analyses of resting-state functional connectivity, voxel-based morphometry and tract-based spatial statistics, we examined functional and structural abnormalities that are both common to and distinct between four different forms of task-specific focal dystonias. RESULTS: Compared to the normal state, all task-specific focal dystonias were characterized by abnormal recruitment of parietal and premotor cortices that are necessary for both modality-specific and heteromodal control of the sensorimotor network. Contrasting the laryngeal and hand forms of focal dystonia revealed distinct patterns of sensorimotor integration and planning, again involving parietal cortex in addition to inferior frontal gyrus and anterior insula. On the other hand, musician's dystonia compared to nonmusician's dystonia was shaped by alterations in primary and secondary sensorimotor cortices together with middle frontal gyrus, pointing to impairments of sensorimotor guidance and executive control. CONCLUSION: Collectively, this study outlines a specialized footprint of functional and structural alterations in different forms of task-specific focal dystonia, all of which also share a common pathophysiological framework involving premotor-parietal aberrations. © 2019 International Parkinson and Movement Disorder Society.

Latest News

Children's Choice Poster Award

June 12, 2019
Sandra
Sandra Hanekamp won the (PI's) Children's Choice Poster Award for her poster: "The structural connectome of isolated task-specific focal dystonia", which she presented at the annual meeting of the Ogranization for Human Brain Mapping, June 9-13, 2019 in Rome, Italy. 
Children's Poster Choice Award.pdf48.08 MB

American Laryngological Association Award

May 1, 2019
talk2

Alexis Worthley, BA, won the Outstanding Paper Award and the Travel Award by the American Laryngological Association (ALA) for the presentation: "A separation of innate and learned vocal behaviors defines the symptomatology of spasmodic dysphonia".

She delivered her talk at the COSM-ALA meeting on May 1-3, 2019 in Austin, TX.

Full text of the paper.pdf352 KB

Tweets by @SimonyanLab